Hadrontherapy with protons and carbon ions in France, research program and status of existing and projected clinical facilities

Joseph REMILLIEUX
Emeritus Prof. Université Claude Bernard, Lyon 1, France
Institut de Physique Nucléaire de Lyon and Centre ETOILE
спасибо

merci

Thank you
From radiotherapy to hadrontherapy

- first clinical radiotherapy in the world
 by Victor Despeignes (Lyon, July 1896)

- first proposal for the clinical use of hadrons
 by Robert Wilson (USA, 1946)

slowing-down properties of ions in tissues:
 - well-defined range
 - sharp Bragg peak
Bragg peak at the end of ion ranges in water
From low LET to high LET projectiles

- **Low LET projectiles**
 - photons, electrons
 - conventional radiotherapy
 - pions, **protons**
 - much better ballistics

- **High LET projectiles**
 - neutrons (via the production of recoil ions)
 - high Relative Biological effect (RBE > 1)
 - but … very poor ballistics
 - **Carbon ions**
 - good ballistics and high biological effects
Comparison between different modalities of tumour irradiation
Hadrontherapy in France

- **Neutrontherapy**: non-operational
 - Orléans centre
 - closed in 2008

- **Proton therapy**: in clinical activity
 - Orsay (CPO-Institut Curie, Paris)
 - open in 1994, 200 MeV p
 - new IBA cyclotron in 2009
 - Nice (MEDICYC- Centre Lacassagne)
 - open in 1994, 65 MeV p
 - for ocular cancers only

- **Ion therapy (carbon ions and protons)**
 - Lyon (ETOILE project, national clinical and research centre)
 - Caen (ARCHADE project, IBA prototype cyclotron, for R&D only)
Status of the *ETOILE* project

Espace de Traitement Oncologique par Ions Légers dans le cadre Européen

- **1997** project initiated at University of Lyon
 - oncologists (JP Gérard et al)
 - and physicists (JR et al)
- **1999** research program on hadrontherapy
 - funded, until 2013, by Region Rhône-Alpes and the City of Lyons
- **2003** first national recognition (Cancer Plan)
- **2005** first agreement by Health Ministry
Status of the *ETOILE* project

Espace de Traitement Oncologique par Ions Légers dans le cadre Européen

- **2007** creation of the Health Cooperation Groupment – GCS-ETOILE, directed by Prof Jacques BALOSSO
- **2007** opening of a Public-Private-Partnership offer – for the design, the construction, the maintenance and the technical management of the ETOILE center
- **2009** acquisition of a 12 000 sq.m.lot in Lyon
- **Feb 2010** positive evaluation of our clinical indications by the *High Autority for Health* (HAS)
- **July 2010**, final industrial offer
Description of the *ETOILE* project (1)

- **ETOILE: a public health need**
 - 3500 – 6000 patients require carbon ion therapy in France every year
 - ETOILE = 2000 patients per year (protons and C ions)
 - estimation confirmed by french HAS for our « consolidated indications »
 - treatment cost with carbon ions: 35 000€/patient, to be compared to
 - the average cost of cancer treatment in France
 - 24 000€/patient
 - the cost of innovative targeted therapies
 - 50 000€/patient
J. Balosso, P. Pommier et al

Total treatment cost of cancer per patient in France

- 2,500 €: Radiothérapie classique 3D (85% de la RTE)
- 4,500 €: Coût pharmaceutique 6 mois de FOLFOX ou FOLFIRI
- 6,400 €: Radiothérapie par IMRT ptumeurs ORL ou prostate
- 8,390 €: un traitement complet par Malthera
- 14,000 €: traitement minimum par Avastin durant 6 mois
- 15,660 €: coût moyen du traitement initial d'un cancer du sein
- 24,000 €: coût moyen du traitement en France
- 25,000 €: un an de traitement par Herceptin
- 35,400 €: intensification chimiothérapie avec autogreffe de CSP
- 50,000 €: un an de traitement par thérapie ciblée (Tarceva, Nexavar, Sutent...)
- 55,600 €: 2 ans de traitement par Gleevec
Description of the *ETOILE* project (2)

- **ETOILE benefits of regional, national and european dynamics and funds**

 Regional

 - the Regional Council of Rhône-Alpes and the Lyon urban Community support investments up to 17M€ and research up to 4M€

 National

 - ETOILE was supported by three successive ministers of health; 10M€ investment and 1M€/year funding of GCS ETOILE

 European FP7

 - since 2002, ETOILE participates to the hadrontherapy consortium *ENLIGHT* based at CERN. With the successive programs (*PARTNER, ULICE, ENVISION*, …)

 - we have in particular been able to finance more than 25 thesis and postdoctoral positions
Description of the *ETOILE* project (3)

- **ETOILE** is at the center of a dense national network of research and development
 - Since 1999 a regional network for hadrontherapy research (*PRRH*) has been driven by University Lyon1 and continuously supported by *Région Rhône Alpes*
 - The Regional Program of Research in Hadrontherapy is strongly coupled with other national research structures
 - The cancer cluster **CLARA** (Canceropole Lyon Auvergne Rhône Alpes)
 - The **IN2P3-CNRS** research groupment **MI2B** (Instruments and methods for biomedical imaging)
• ETOILE will be also an open platform for hadrontherapy *R&D*
 – In addition to the 3 treatment rooms, a room with beam equipments specially devoted to R&D will be implanted
 – *Laboratories* dedicated to hadrontherapy will be implanted inside the ETOILE center building
 – This set of facilities, will be managed by a permanent *technical staff* able to assist external teams in their experiments.
Regional Program of Research in Hadrontherapy

- a program driven for ten years by a hundred of researchers linked to ETOILE
- coordinated by Prof. J-M Moreau and J.R.
Thematics of PRRH

– Medical project (J.Balosso and P.Pommier)
– Medico-economy and epidemiology (P.Pommier)
– In-silico modelling of treatments (B.Ribba)
– Basic data acquisition, irradiation control (D.Dauvergne)
– Hadronbiology (C.Rodriguez, M.Beuve and N.Foray)
– Simulation of dose deposition (D.Sarrut and N.Freud)
– Movement and deformation of tumours (B.Shariat)
– Study of a cryogenic ion gantry (in coll. with CEA)
The medical project (1)

- **Organization of equitable recruitment of patients with the highest medical benefit**
 - Literature study + groups of medical experts
 - elective indications for photons/protons/carbon ions
 - **consolidated indications** for C ions, 800-1000 french cases/year (validated by HAS = to be reimbursed by the social security system)
 - Adenoid cystic carcinoma (head and skull base)
 - Melanoma mucosa (head and neck)
 - Chordoma (skull base and spine)
 - Chondrosarcoma (axial skeleton)
 - Soft tissue sarcoma
 - **prospective indications**, more than 3000 french cases / year, (to be financed in the framework of clinical research programs)
P. Pommier et al

Procedure

1. **Step 1 →**
 - Biological and physical basic criteria to apply Hantrotherapy

2. **Step 2 →**
 - Local Working Groups: Screening of all topographies and histologies to identify a priori any potential indication for Hantrotherapy

3. **Step 3 ↓**
 - “Evidence based medicine” approach: screening of all relevant literature to extract the present state of the art outcome of selected pathologies

4. **Step 4 →**
 - “Epidemiological landscape”: search of national French collection of cancer registry (FRANCIM) and “One day survey” in French radiation oncology departments

5. **Step 5 →**
 - International experts evaluation and validation
 - By end of 2006
 - Indications double hierarchy = priority table
 - 1) according to the frequency
 - 2) according to the expected medical benefit

6. **Step 6 ↑**
 - Rational choice of indications to organise the recruitment through international multicentric prospective clinical trials

 - For 2006
 - During 2006 to 2008

 - A portfolio of multicentric clinical trials

 - Spread of medical literature
 - by
 - localisation

 - Increasing incidence
 - Increasing medical benefit

 - The priority table
The medical project (2)

- **Medical Organisation of the Recruitment for Carbon Ion Radiotherapy (OMéRRIC))**
 - ETOILE’s capacity, 26,000 sessions (p+ C)/year
 - in the routine mode, 6,000 proton sessions (less than 250 patients) for 20,000 carbon sessions (1,500 patients)
- **Preparation of the clinical trials**
- **Set-up of national, european and world wide networks**
 - **ULICE** *(Union of Light Ion Centers in Europe)*
Medico-economical simulations

- Three integrated medico-economical models
 - Patient recruitment, Treatment cost and cost-effectiveness, Operating process
 - from 4 inputs (epidemiology, indications, protocols and treatment centers)
- The results were used for the tendering process, for exemple, in the optimisation of
 - the patient recruitment, from a new epidemiologic study (EpiHadron)
 - the number of treatment rooms and their equipment (rotating gantry ?)
 - the patient scheduling and trajectory in the ETOILE building

Coll.: Centre Léon Bérard, Univ. Lyon, St Etienne, Clermont-Ferrand, European network ULICE
In silico modeling and experimentation of hadrontherapy therapeutic effects

A transfer to hadrontherapy of the « in silico » modeling principles used for medicaments development

• A tool
 – to help patient selection
 – to optimize treatment delivery

• A model at three levels
 – cell level: search for predictive biomarkers of cell survival
 • microarray data on +/- radioresistant cells
 – tissue level: dynamics of tumour growth
 • in vivo animal experiments
 – body level: relation tumour growth / patient survival
 • from japanese and german databases of patients

Coll. Univ. Lyon1, E N S Lyon, INRIA, INSERM
B. Ribba et al
Basic data acquisition and irradiation control (1)

3D dose distributions receive a large contribution from **nuclear fragmentation events**
- to be included in the Treatment Planning Systems
- to be controlled by *in situ imaging* during patient irradiation

Fragmentation data for carbon projectiles
- data and theories are not accurate enough
 - for carbon incident energies <150 MeV/u
- two experimental programs to measure energy/angle distributions of all fragments in biological targets
 - a national collaboration at GANIL-Caen (95 MeV/u 12C)
 - by IN2P3 teams (*Caen-Lyon-Strasbourg*)
 - a European collaboration at GSI-Darmstadt (150-400 MeV/u)
 - by teams from INFN-Italy, GSI-Germany, CEA and IN2P3-France
Basic data acquisition and irradiation control (2)

- **In situ and on line dose imaging**
 - detection of radiations / particles linked to the fragmentation events can be used
 - **prompt gamma rays**
 - development of a high efficiency Compton camera
 IPNLyon, INSALyon, Univ Lyon and Aix-Marseille, ENVISION
 - **light fragments (protons, …)**
 - development of a proton tracking detector
 IPNLyon, Univ. Lyon, CNRS MI2B, ENLIGHT
 - **two photon annihilation of positrons emitted by \(^{11}\text{C},^{15}\text{O},^{10}\text{C}\)**
 - development of an in-beam TOF-PET camera
 IPNLyon, Univ.Lyon and Clermont- Ferrand, CNRS MI2B, ENLIGHT
Prompt gamma camera

Multi-detector prototype (C. Ray et al)
Prompt gamma yield, for C ions in PMMA

\[\text{Number gamma / ion} \]

\[\text{Depth (mm)} \]

GSI

\[^{12}\text{C @ 305 MeV/u} \]

Bragg peak

E. Testa et al (PTCOG 48)
Proton vertex imaging (P. Henriquet et al)
Radiobiological effects of C ions (1)

1. Molecular and cellular mechanisms of radioresistance: search for biomarkers
 - experiments with photons and C ions
 - show the role of Cancer Stem Cells in the local recurrence after photon or C irradiations
 - show the role of p53 and ceramide on failures in DNA repair, apoptosis and mitotic catastrophes
 - simulations of oxidative stress / anti-oxidant defense
 - show that O2- and H2O- radicals play a major role in the reduction of the oxygen-effect with ions
 - evidence the role of glutathione (anti-oxidant) in the radioprotection of ADN (radioresistence of tumours)
2. Improving treatment protocols (TPS)

- The **LEM model** (GSI), currently used for C ion TPS, was revisited
 - from experimental arguments
 » need for calibration of free parameters
 - from conceptual arguments
 » introduction of non-local effects

 an alternative model is now under construction

- An experimental program is running to measure the effect of ion dose rate on cell survival
 - and its consequences on the duration of irradiation sessions
3. Understanding and prevention of the radiosensitivity of normal tissues

- immunofluorescence was used to evidence unrepaired DNA double-strengthen breaks and then side effects in hadrontherapy of brain

- the role played by specific proteins was measured

propositions to improve radioprotection during the treatment of brain tumours are in progress

Coll. Univ. Lyon 1 (Lyon-Sud Hospital, IPNL, LIRIS), INSERM, GANIL-Caen, GSI-Darmstadt, CAL-Nice, ENLIGHT
Simulation of dose deposition for treatment planning (1)

Need for realistic simulation tools for TPS
dose distributions and secondary particles

- **Medical realism**
 - anatomical complexity (from 3D or 4D CT scans)
 - biological complexity (RBE = f(particle, energy, LET, tissue))

- **Physical realism**
 - Monte Carlo simulations (realistic but far too slow) ?
 - deterministic methods (fast but not realistic enough) ?

- **Inverse planning strategies**
 - for the optimisation of irradiation parameters: beam direction, number of beams, Bragg peak position, fluence values
Simulation of dose deposition for treatment planning (2)

- **Acceleration of simulations by**
 - **Particle transport optimisation** (*Geant4/GATE*)
 - *modeling and experimental validation of fragmentation and secondary emission of p, n, prompt gamma, …*
 - **Hybrid algorithms**
 - Monte Carlo production of secondary particles
 - deterministic transport of these particles (ray casting)
 - **Massively parallel computing**
 - on local clusters or on computing grids

Coll.: Univ Lyon1 (CREATIS, IPNLyon), INSA-Lyon, IN2P3-MI2B Geant4-GATE, ENVISION
Treatment of moving organs (1)

Predictive evolution of tumour and organs at risk

- position, shape and density
- due to breathing (lung cancer), blood flow, ...

1. Image processing (non-invasive methods)

- Development of processing tools
 - for the accurate reconstruction of a (3D+T) breathing image of the patient, from *in situ* Cone-Beam (2D+T) projections

- Extension of the method
 - to fluoroscopy images taken at different viewing angles and from external chest video cameras
2. **Biomechanical modeling** of respiration

 - breathing is a chaotic motion
 - due to the **independent action of chest muscles and diaphragm**

 - development of a full biomechanical model
 - including rib cage (intercostal muscles), soft tissues (around skeleton), diaphragm and **pleura**
 - correlates exchanged **air flows** to ribs and diaphragm movements
 - correlates the external movements of the **skin** (external sensors) to the internal movement (of the tumour)

Coll.: Univ Lyon1 (LIRIS, CREATIS), ENVISION
Biomechanical model for human respiration (B. Shariat et al)
Conclusions on hadrotherapy in France

• **Clinical protontherapy** is available, since 1994, at Paris (CPO) and Nice (Medicyc)

• **Clinical carbon ion therapy** will be available at the opening of the ETOILE center in Lyon

• **Advanced research programs** on hadrotherapy are developed
 – around the ETOILE project
 – by CNRS-IN2P3 (MI2B research groupment)
 – and strongly coupled to the ENLIGHT european network

• **Facilities for hadrotherapy R&D** will be available
 – at Caen (Archade, IBA-C400 cyclotron)
 – at Lyon (ETOILE research plateform)
спасибо

mercì

Thank you
Part of the PRRH-ETOILE research group